Respuesta al ejercicio isométrico en pacientes sometidos a hemodiálisis periódicas

J. M.* Domínguez,* P. Bárce,lo,** J. García,* M. Rodá,** B. de la Torre,*** G. del Río**

Resumen

Se practicó cateterismo cardíaco derecho con catéter de termodiulación en 11 pacientes sometidos a hemodiálisis periódica, con el objeto de estudiar el comportamiento hemodinámico ante el ejercicio isométrico. La respuesta se consideró normal cuando el cociente entre el incremento del trabajo ventricular y el incremento de la presión capilar pulmonar (ΔTV/ΔPCP) era > 1 y anormal cuando era < 1. En 5 pacientes (45%), la respuesta fue anormal. Estos pacientes se caracterizaban por tener, en situación basal, los índices de trabajo sistólico (ITS) más elevados (128 ± 5.7 versus 88.6 ± 17; p < 0.01), no existiendo diferencia significativa en el nivel de presión sistólica media (PSM) (144.9 ± 12 versus 139 ± 12; p = n.s.). La implicación del nivel de IVS en situación basal, en el tipo de respuesta ante el ejercicio, sugiere la existencia de una sobrecarga de volumen que sitúa al corazón en el límite de la reserva de precarga (‘mismatch’ o desacoplamiento precarga-contratilidad).

Response to isometric practice in patients undergoing periodical hemodialysis

Right cardiac catheterization with thermodilution catheters was performed on 11 patients undergoing periodical hemodialysis, for the purpose of studying the hemodynamic behaviour with regard to isometric practice. The response was considered to be normal when the Increase Ventricular Work/Increase Pulmonary Capillary Pressure (ΔTV/ΔPCP) quotient was > 1 and abnormal when it was < 1. In 5 patients (45%) the response was abnormal. These patients were characterized by having the highest Systolic Work Index (ITS) in the basal situation (128 ± 5.7 versus 88.6 ± 17; p < 0.01), there being no significant difference in the Mean Systolic Pressure level (PSM) (144.9 ± 12 versus 139 ± 12; p = n.s.). The implication of the Systolic Volume Index (IVS) level in the basal situation, in the type of response to the practice, suggests the existence of a volume overload which places the heart at the limits of pre-load reserves (‘mismatch’ or the post load-contraction disconnection).

Introducción

El estado funcional del miocardio es un aspecto especialmente polémico del enfermo sometido a hemodiálisis periódica. En este tipo de pacientes, los signos y síntomas de origen cardiovascular son de aparición casi constante. A ello hay que añadir que al aparato cardiovascular se le considera causa directa de algo más del 40% de los casos de mortalidad (1-4).

Una de las principales causas de la polémica es la dificultad que existe para valorar una situación hemodinámica, que en condiciones basales se ve interferida por múltiples factores que actúan de forma diversa. La fístula arteriovenosa y la anemia facilitan el funcionalismo miocárdico al disminuir la precarga, pero, por otro lado, también aumentan el trabajo cardiaco al crear una situación de sobrecarga de volumen (5, 6). Otro factor importante a tener en cuenta son las sesiones de diálisis, que modifican el estado de hidratación del paciente e imponen una variabilidad de las presiones de llenado ventricular que las convierten en índices poco fiables de disfunción ventricular (7). Tal cúmulo de circunstancias, a las que indudablemente se agrega la frecuente presencia de hipertensión arterial y otros factores menos conocidos (8), son responsables, al menos en parte, de los grandes problemas que plantea el aparato cardiovascular del paciente sometido a diálisis: ¿Existe una miocardiopatía con identidad propia en estos pacientes?, en las frecuentes manifestaciones de congestión visceral que presentan, ¿interviene un déficit
de la función miocárdica o, por el contrario, son simplemente la consecuencia de una situación de hiperhidratación?

Con el objeto de investigar la situación funcional del miocardio de los pacientes tratados con hemodiálisis periódicas, hemos realizado un estudio hemodinámico de la respuesta al ejercicio isométrico en 11 pacientes, no seleccionados, sometidos a tratamiento con hemodiálisis periódica.

Material y método

El estudio comprende a 11 pacientes en insuficiencia renal terminal y sometidos a hemodiálisis, en sesiones de 4.5 horas, tres veces a la semana.

Todos eran portadores de una fistula arteriovenosa de Cimino-Brescia (de localización radial), a excepción de 1 paciente que llevaba dos, una de ellas considerada hipofuncionante.

En cada paciente, se anotaron los datos clínicos referentes a edad, sexo, tiempo de diálisis, antecedentes clínicos de insuficiencia cardiaca (durante el tiempo de diálisis) e hipertensión arterial.

La existencia de valvulopatía y/o derrame pericárdico se descartó mediante examen clínico y ecocardiográfico.

El estudio se llevó a cabo el día entremedio de dos sesiones de diálisis. Tras explicar al paciente la naturaleza del mismo y obtener su consentimiento, se introdujo, mediante Seldinger venoso femoral, hasta la arteria pulmonar un catéter flotante de termomodulación, conectado a un transductor de presión HP1280C y a un registro poligrafo de inscripción directa.

El cálculo del gasto cardíaco (GC) se hizo mediante técnica de termomodulación con computador "E for M". La presión arterial se determinó mediante un manguito neumático conectado a un esfigmomanómetro.

En situación basal y a los 3 min. de ejercicio isométrico, a un tercio de la capacidad máxima voluntaria (determinada previamente), se obtuvieron el GC, las presiones intracavitarias (arteria pulmonar, capilar pulmonar y aurícula derecha), la presión arterial sistémica y la frecuencia cardíaca (FC).

Aplicando fórmulas establecidas (9), se calcularon los siguientes parámetros derivados: Índice cardíaco (IC), índice de volumen sistólico (IVS), trabajo ventricular (TV) e índice de trabajo sistólico (ITS).

La respuesta normal, o patológica, al ejercicio se definió aplicando el criterio establecido por Helfant (10). Se calculó la relación entre el incremento del TV y el incremento de la presión capilar pulmonar (ΔTV/ΔPCP) y, de acuerdo con el citado criterio, la respuesta se consideró anormal, cuando el cociente era inferior a la unidad.

El límite máximo de la normalidad para la presión capilar pulmonar se estableció en 14 mm Hg.

Durante la realización del ejercicio se prestó especial atención a evitar que el paciente realizase maniobras de Valsalva.

El análisis de significación de las diferencias se realizó aplicando el test de Student-Fisher para valores cuantitativos independientes.

Resultados

Las características clínicas de los pacientes se especifican en la tabla I. Cinco tenían antecedentes de insuficiencia cardiaca y 10 de hipertensión arterial sistémica. Todos tenían valores de hematocrito por debajo de la normalidad (media 22.5; límites 15-34).

<p>| Tabla I |</p>
<table>
<thead>
<tr>
<th>Características clínicas</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número total</td>
</tr>
<tr>
<td>Sexo V/H</td>
</tr>
<tr>
<td>Edad media</td>
</tr>
<tr>
<td>Tiempo medio de diálisis</td>
</tr>
<tr>
<td>Antecedentes de hipertensión arterial</td>
</tr>
<tr>
<td>Antecedentes de insuficiencia cardiaca</td>
</tr>
<tr>
<td>Hematocrito</td>
</tr>
</tbody>
</table>

En la tabla II se presenta un resumen detallado de los parámetros hemodinámicos registrados en situación basal (R) y tras el ejercicio (E).

Durante la realización del ejercicio, en todos los casos aumentó la FC (de 71.2 ± 10 a 98.8 ± 13); p < 0.001) y la presión sistólica media (de 144.7 ± 11 a 174.6 ± 13; p < 0.001), confirmando la adecuada colaboración de los pacientes en la realización de la maniobra (fig. 1).

Se produjo un aumento significativo del IC (de 4.1 ± 0.8 a 5.4 ± 0.9; p < 0.001), a expensas del aumento de la FC. El IVS no experimentó cambios significativos (59.1 ± 13 versus 55.9 ± 0.9; p = n. s.) (fig. 2).

En 2 pacientes, la PCP en reposo era superior a la normalidad. En 7 de los 9 casos con PCP normal en reposo, se produjo un incremento de presión con el ejercicio, que superó los límites de la normalidad (fig. 3).

El ITS aumentó en 7 y no se modificó e incluso disminuyó en 4 (fig. 3). En cambio, el trabajo ventricular aumentó en todos (de 14,1 ± 2 a 22,6 ± 3), debido al aumento de la FC (fig. 4).
TABLA II

Valores hemodinámicos obtenidos antes (R) y después (E) del ejercicio isométrico

<table>
<thead>
<tr>
<th>Caso n.°</th>
<th>GC</th>
<th>IC</th>
<th>FC</th>
<th>PSM</th>
<th>IVS</th>
<th>ITS</th>
<th>TV</th>
<th>IRS</th>
<th>PCP</th>
<th>PAD</th>
<th>ΔTV/ΔPCP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R</td>
<td>E</td>
<td>R</td>
<td>E</td>
<td>R</td>
<td>E</td>
<td>R</td>
<td>E</td>
<td>R</td>
<td>E</td>
<td>R</td>
</tr>
<tr>
<td>1</td>
<td>7,9</td>
<td>9</td>
<td>4,7</td>
<td>5,4</td>
<td>75</td>
<td>106</td>
<td>143</td>
<td>175</td>
<td>63</td>
<td>51</td>
<td>109 108</td>
</tr>
<tr>
<td>2</td>
<td>6,9</td>
<td>10,8</td>
<td>3,9</td>
<td>6,1</td>
<td>60</td>
<td>104</td>
<td>143</td>
<td>173</td>
<td>66</td>
<td>79</td>
<td>129 128</td>
</tr>
<tr>
<td>3</td>
<td>6,8</td>
<td>9</td>
<td>4,6</td>
<td>6,2</td>
<td>60</td>
<td>88</td>
<td>130</td>
<td>167</td>
<td>78</td>
<td>70</td>
<td>142 154</td>
</tr>
<tr>
<td>4</td>
<td>6,3</td>
<td>10,3</td>
<td>3,7</td>
<td>6,1</td>
<td>72</td>
<td>104</td>
<td>127</td>
<td>150</td>
<td>53</td>
<td>59</td>
<td>91 118</td>
</tr>
<tr>
<td>5</td>
<td>5,8</td>
<td>8,3</td>
<td>3,9</td>
<td>5,2</td>
<td>60</td>
<td>80</td>
<td>120</td>
<td>146</td>
<td>65</td>
<td>70</td>
<td>129 163</td>
</tr>
<tr>
<td>6</td>
<td>7,1</td>
<td>8,4</td>
<td>4,3</td>
<td>5</td>
<td>60</td>
<td>86</td>
<td>147</td>
<td>180</td>
<td>72</td>
<td>59</td>
<td>141 137</td>
</tr>
<tr>
<td>7</td>
<td>8,3</td>
<td>10</td>
<td>5,8</td>
<td>5,2</td>
<td>84</td>
<td>116</td>
<td>137</td>
<td>200</td>
<td>69</td>
<td>60</td>
<td>126 125</td>
</tr>
<tr>
<td>8</td>
<td>5,9</td>
<td>8,1</td>
<td>3,4</td>
<td>4,6</td>
<td>68</td>
<td>107</td>
<td>140</td>
<td>182</td>
<td>51</td>
<td>43</td>
<td>98 103</td>
</tr>
<tr>
<td>9</td>
<td>4,4</td>
<td>6,1</td>
<td>2,7</td>
<td>3,8</td>
<td>81</td>
<td>117</td>
<td>157</td>
<td>173</td>
<td>34</td>
<td>32</td>
<td>75 77</td>
</tr>
<tr>
<td>10</td>
<td>7,8</td>
<td>10,5</td>
<td>4,5</td>
<td>6</td>
<td>72</td>
<td>84</td>
<td>168</td>
<td>175</td>
<td>63</td>
<td>72</td>
<td>138 157</td>
</tr>
<tr>
<td>11</td>
<td>7,1</td>
<td>7,8</td>
<td>4,2</td>
<td>4,6</td>
<td>72</td>
<td>120</td>
<td>120</td>
<td>188</td>
<td>58</td>
<td>38</td>
<td>87 91</td>
</tr>
<tr>
<td>Media</td>
<td>6,7</td>
<td>8</td>
<td>4,1</td>
<td>5,2</td>
<td>69</td>
<td>101</td>
<td>145</td>
<td>175</td>
<td>61</td>
<td>57,5</td>
<td>106 124</td>
</tr>
<tr>
<td>± DS</td>
<td>1</td>
<td>2,5</td>
<td>0,7</td>
<td>0,7</td>
<td>8</td>
<td>14</td>
<td>11</td>
<td>13</td>
<td>11</td>
<td>14</td>
<td>33 26</td>
</tr>
</tbody>
</table>

R = Reposo. E = Esfuerzo. GC = Gasto cardíaco. IC = Índice cardíaco. FC = Frecuencia cardíaca. PSM = Presión sistólica media. IVS = Índice de volumen sistólico. ITS = Índice de trabajo sistólico. TV = Trabajo ventricular. IRS = Índice de resistencias sistémicas. PCP = Presión capilar pulmonar. PAD = Presión de la aurícula derecha. ΔTV/ΔPCP = Coeficiente o relación entre el incremento del trabajo ventricular y el incremento de la presión capilar pulmonar.
Fig. 1. Valores medios de la frecuencia cardíaca (FC) y de la presión sistólica media (PSM), en reposo (R) y tras el ejercicio (E).

Fig. 2. Modificaciones del índice cardíaco (IC) y del índice de volumen sistólico (IVS), tras el ejercicio. R: reposo; E: ejercicio.
Fig. 3. Comportamiento de la presión capilar pulmonar (PCP) y del índice de trabajo sistólico (ITS) con el ejercicio. R: reposo; E: ejercicio.

Fig. 4. Comportamiento del trabajo ventricular con el ejercicio. R: reposo; E: ejercicio.

Fig. 5. Diagrama de Frank-Starling. Desplazamientos de la curva de función ventricular tras el ejercicio.

ITS: Índice de trabajo sistólico; PCP: Presión capilar pulmonar.
A nivel de diagrama de Starling (fig. 5), los desplazamientos sobre la curva de función ventricular tras el ejercicio muestran, en general, pendientes aplanadas, debido a un desproporcionado aumento de la PCP en relación al ITS, en la mayoría de los pacientes.

La respuesta al ejercicio se consideró patológica, en 5 casos en los que la relación ΔTV/ΔPCP fue inferior a 1 (tabla II). En todos ellos, la PCP alcanzó valores iguales o superiores a 14 mm Hg tras el ejercicio.

La comparación de la situación hemodinámica basal entre los individuos con respuesta normal y patológica (fig. 6) demuestra que los que tienen un comportamiento anormal son los que parten de un ITS más elevado (128,02 ± 5,7 versus 88,6 ± 17; p < 0,01), debido a un mayor IVS (69,5 ± 5,2 versus 50,5 ± 9,4; p < 0,01). No son significativas, en cambio, las diferencias de PSM (144,9 ± 12 versus 139 ± 12; p = n. s.).

Discusión

Independientemente de cuál sea la causa, son numerosas las publicaciones que sugieren que en el enfermo sometido a hemodiálisis periódica se producen alteraciones del funcionamiento miocárdico, capaces de dar manifestaciones clínicas de insuficiencia cardíaca.

Drucke (11), en un estudio de 21 pacientes sometidos a hemodiálisis y seleccionados por la presencia de cardiomegalia y antecedentes de insuficiencia cardíaca, hace el diagnóstico de miocardiopatía congestiva idiopática en 10, tras haber descartado mediante cateterismo cardíaco otras patologías asociadas. En todos los casos, observa una reducción de la velocidad de acortamiento circunferencial, y en 6 una disminución de la fracción de eyección (FE). El autor llega a la conclusión de que en los pacientes en hemodiálisis existe un tipo de miocardiopatía inespecífica no atribuible a patología coronaria.

En el estudio de la función ventricular con radioisótopos de Hung y cols. (12), realizado también en pacientes en hemodiálisis con antecedentes de insuficiencia cardíaca, se subdivide a los enfermos en dos grupos, de acuerdo con la FE. En un primer grupo, la FE es normal y se atribuyen las manifestaciones clínicas de "insuficiencia cardíaca" a la hiperhidratación. En el segundo grupo, con una franca reducción de la FE, se responsabiliza a la alteración de la función ventricular de las manifestaciones clínicas. Sin embargo, el seguimiento de los pacientes con FE disminuida, el autor observa que en 3 de 4 supervivientes la FE se normaliza con el aumento del número de diálisis.

Las observaciones de Drucke, Hung y otros (11-15) sugieren que bastantes pacientes tratados con hemodiálisis periódica tienen disfunción miocárdica, que en algunos casos puede retrogradar tras el aumento de las diálisis o el trasplante renal, planteando de esta forma la cuestión de la miocardiopatía reversible, en el paciente en hemodiálisis.

En nuestro estudio, los pacientes no fueron seleccionados de acuerdo con la presencia o ausen-
cia de insuficiencia cardíaca y en todos menos uno, la situación hemodinámica basal puede considerarse normal dentro de las peculiaridades características hemodinámicas de estos pacientes, en los que la constante habitual es la presencia de un GC elevado. En cambio, tras la sobrecarga aguda que representa el ejercicio isométrico, fue posible poner de manifiesto la existencia de un elevado número de pacientes con comportamiento anómalo ante el mismo. De acuerdo con el criterio de Hellfánt, el 45% de los casos tuvieron un comportamiento patológico ante el ejercicio, indicativo de la existencia de una disminución de la reserva miocárdica en estos pacientes.

Sin embargo, el dato más interesante del estudio es, a nuestro juicio, la relación que se establece entre respuesta al ejercicio e ITS en situación basal. Los pacientes que presentan respuesta patológica al ejercicio son los que en situación basal tienen el ITS más elevado, a expensas del aumento del IVS. Es decir, se trata de pacientes en los que existe una disminución de la reserva miocárdica, posiblemente no debida a una alteración directa e irreversible de la contractilidad, sino secundaria a un aumento de la poscarga, básicamente debido al aumento de volumen sistólico, que sitúa al corazón en la parte más alta de la curva de función ventricular de Frank-Starling. En dicho punto, la reserva de la precarga está utilizada al límite, de forma que ante el mayor incremento de la poscarga que representa el ejercicio isométrico, el corazón fracasa al no poder utilizar la reserva de la precarga como mecanismo compensador.

El fenómeno es, en realidad, un equivalente del concepto esbozado por Ross (16) como "mist-match" o desacoplamiento poscarga-contractilidad, cuyo ejemplo más parecido a lo que ocurre en el paciente en hemodiálisis sería la sobrecarga de volumen de la insuficiencia aórtica. El corazón, enfrentado crónicamente a una sobrecarga de volumen, inicialmente mantiene un funcionalismo adecuado, a costa de agotar la reserva de la precarga (dilatación). Cuando esta última se sitúa en el límite, cualquier incremento de la poscarga se acompaña de la disminución de parámetros que miden la función ventricular como la fracción de eyeción (FE), sin que ello represente necesariamente una alteración intrínseca de la contractilidad. A favor de tal hipótesis está la normalización de la FE después de la cirugía valvular sustitutiva en algunos casos de insuficiencia aórtica (17), o tras el aumento de la diálisis o el trasplante en la insuficiencia renal (7, 10, 11).

Ignoramos si también en los pacientes en hemodiálisis puede suceder lo mismo que en la insuficiencia aórtica, en la que la sobrecarga de volumen mantenida durante años acaba produciendo una alteración irreversible de la contractilidad (18).

En resumen, el estudio del comportamiento hemodinámico ante el ejercicio isométrico de los pacientes en hemodiálisis pone de manifiesto un elevado número de respuestas anómalas ante el mismo, posiblemente debidas a la sobrecarga de volumen, que sitúa el corazón en el límite de la capacidad de reserva de la precarga ("mismatch" o desacoplamiento poscarga-contractilidad) y no a una alteración intrínseca de la contractilidad.

Agradecimiento

Al Dr. C. Crexells, de la Unidad de Función Cardiopulmonar del Hospital de la Sta. Cruz y S. Pablo, por sus consejos en la elaboración del manuscrito original. A la Sra. Isabel Batiste, por la labor de asistencia técnica en la elaboración del manuscrito; y al equipo de enfermería de la Unidad Coronaria del Hospital de S. Pablo, por su inestimable ayuda en la realización del estudio.

Bibliografía

